

Oscillator JOX254S(V) · (VC)OCXO

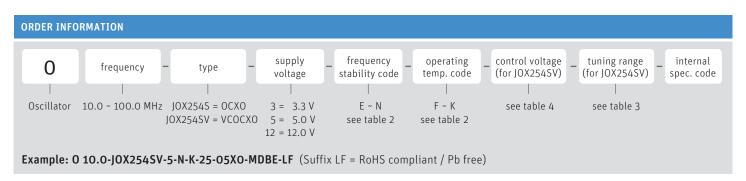
- oven controlled crystal oscillator (OCXO or VCOCXO)
- sinewave output, 25.4 mm x 25.4 mm
- superior frequency stability, best option ± 0.5 ppb
- wide temperature range up to -40 °C ~ +85 °C
- frequency control option available (VCOCXO)
- supply voltage options 3.3 V, 5.0 V (option 12.0 V)

RoHS compliant

REACH

GENERAL DATA (OVERVIEW OF OPTIONS)					
TYPE		J0X254S / J0X254SV			
frequency range		10.0 ~ 100.0 MHz (see table 1)			
frequency	at +25 °C (*1)	± 50 ppb / ± 100 ppb max.			
tolerance /	temperature (*2)	± 0.5 ppb ~ ± 50 ppb, examples see table 2			
stability	supply voltage (*3)	\pm 0.2 ppb ~ \pm 20 ppb max. (at V_{DC} \pm 5%)			
	load change (*4)	± 0.2 ppb ~ ± 20 ppb max (at nom load ± 5%)			
	aging first year (*5)	± 50 ppb ~ 300 ppb max. (at +25 °C)			
	aging per day (*6)	± 0.5 ppb ~ 5.0 ppb max. (at +25 °C)			
tempera-	operating	up to -40 °C \sim +85 °C, see table 2			
ture	operable	up to -40 °C ~ +85 °C			
	storage	-55 °C ~ +105 °C			
supply voltage V _{DC}		3.3V (± 5 %) / 5.0V (± 5 %) / 12.0V (± 5 %)			
steady current consumption		250 mA typ. / 400 mA max. (example)			
warm-up current consumption		650 mA typ. / 800 mA max. (example)			
warm-up tir	me (*7)	5 minutes typ.			
output	load nom.	50 Ω			
	level min.	6 dBm			
	harmonic suppression	-30 dBc max40 dBc typ.			
	spurious suppression	-60 dBc max80 dBc typ.			
V _c frequ. tu	ning range JOX254SV	± 0.5 ppm min. ~ ± 2.5 ppm min.			
V _c frequ. tur	ing voltage JOX254SV	1.65 V \pm 1.65 V at V _{DC} = 3.3 V			
		$2.50 \text{ V} \pm 2.50 \text{ V}$ at $\text{V}_{\text{DC}} = 5.0 \text{ V}$			
		2.50 V \pm 2.50 V at V _{DC} = 12.0 V			
input impedance of $V_{\rm c}$ min.		100 kΩ			
V _C frequ. tuning linearity max.		10%			
phase noise	at 10 Hz	-125 dBc/Hz typ.			
at f _o = 10.0 MHz,	at 100 Hz	-150 dBc/Hz typ.			
$V_{DC} = 5.0V$	at 1 KHz	-155 dBc/Hz typ.			
	at 10 KHz	-160 dBc/Hz typ.			
	at 100 KHz	-160 dBc/Hz typ.			

TABLE 1: DEVELOPED FREQUENCIES						
all frequencies in MHz:	10.0	12.80	16.3840	19.20		
	20.0	38.40	40.0	100.0		

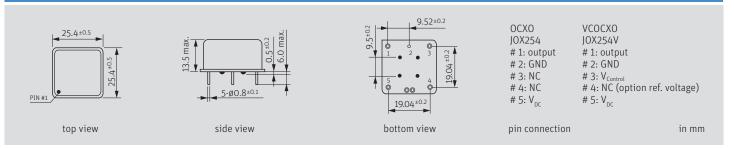

TABLE 2: FREQUENCY STABILITY CODE (EXAMPLES)						
frequency stability temperature code		E ± 50 ppb	G ± 20 ppb	I ± 5.0 ppb	L ± 2.0 ppb	N ± 0.5 ppb
-10 °C ~ +70 °C	F	0	0	0	0	0
-20 °C ~ +70 °C	В	0	0	0	0	0
-30 °C ~ +85 °C	М	0	0	0	0	0
-40 °C ~ +70 °C	N	0	0	0	0	0
-40 °C ~ +85 °C	K	0	0	0	0	0

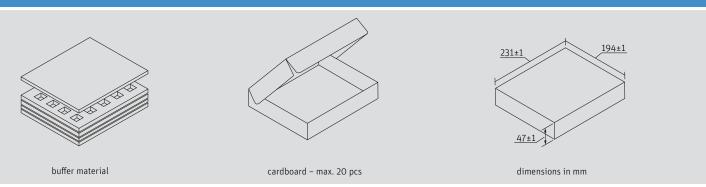
O = ask for availability or other frequency stability options

TABLE 3: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD				
V _C frequency tuning range	code	minimal	maximal	
of JOX254	05X0	± 0.5 ppm	undefined	
options may not be	10X0	± 1.0 ppm	undefined	
available at all frequencies,	0510	± 0.5 ppm	± 1.0 ppm	
individually ask for other	0815	± 0.8 ppm	± 1.5 ppm	
options	0824	± 0.8 ppm	± 2.4 ppm	
	1525	± 1.5 ppm	± 2.5 ppm	
	25X0	± 2.5 ppm	undefined	

TABLE 4: VC CENTER VOLTAGE AND VC RANGE CODING METHOD					
V _c center voltage and V _c range	code	center and range of V_{c}	at supply		
	16	1.65 V ± 1.65 V	± 3.3 V		
	25	2.50 V ± 2.50 V	± 5.0 V		
	25	2.50 V ± 2.50 V	± 12.0 V		

Important Note: This generic datasheet can't show all available options. Therefore, please contact our sales team for specific options not shown in this datasheet. (*1) ~ (*7): Please refer to the examples for test conditions on page 2




2025

Oscillator JOX254S(V) · OCXO & VCOCXO · PIN TYPE

DIMENSIONS

PACKING

PACKAGING NOTE

- typically supplied in a carton box
- a full carton box contains 20 pcs.

NOTE

- for best supply noise rejection, connect a capacitor of 100 nF and a second capacitor of 10 μF closely to the supply voltage pins
- a separate voltage supply rail ensures the best phase noise

TEST CONDITIONS (EXAMPLES)

- *1: Measured frequency after 15 minutes of operation, observed with $T_A = +25$ °C \pm 1 °C, at nominal V_{DC} , the nominal load and nominal center V_{CC} (if applicable) and within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: T_A varied in the specified operating temperature range. The frequency variation is normalized to $f_{ref} = (f_{max} + f_{min})/2$, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2 °C per minute.
- *3: Frequency variation if V_{DC} is varied by \pm 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), $T_{A} = +25$ °C and nominal load.
- *4: Frequency variation if the load is varied by ± 5 % of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), $T_{A} = +25$ °C and nominal load.
- *5: Long-term maximum frequency deviation at $T_A = +25$ °C ±1 °C over the specified time, referred to the ex-factory status at constant T_A , nominal V_{DC} , and nominal V_{C} (if applicable). The frequency reference is determined at $T_A = +25$ °C, at nominal V_{DC} , nominal center V_{C} (if applicable), nominal load and 30 days of operation. Normally, the largest frequency deviation occurs within the 1st year.
- *6: Maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A = +25 °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 30 days of continuous operation.
- *7: Time until the maximum frequency deviation is less than a specified value, referred to the final frequency. This final frequency is acquired after 1h of continuous operation at $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable) and nominal load.

©JQG 2025 18062025